Left Termination of the query pattern ackermann_in_3(g, a, g) w.r.t. the given Prolog program could not be shown:



Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

Clauses:

ackermann(0, N, s(N)).
ackermann(s(M), 0, Val) :- ackermann(M, s(0), Val).
ackermann(s(M), s(N), Val) :- ','(ackermann(s(M), N, Val1), ackermann(M, Val1, Val)).

Queries:

ackermann(g,a,g).

We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
ackermann_in: (b,f,b) (f,b,b) (b,f,f) (f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → U1_AGG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → U1_AGA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U3_AGG(x1, x2, x3, x4)  =  U3_AGG(x4)
U1_AGA(x1, x2, x3)  =  U1_AGA(x3)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
ACKERMANN_IN_GAG(x1, x2, x3)  =  ACKERMANN_IN_GAG(x1, x3)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)
U1_GAG(x1, x2, x3)  =  U1_GAG(x3)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U1_AGG(x1, x2, x3)  =  U1_AGG(x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x3, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → U1_AGG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → U1_AGA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U3_AGG(x1, x2, x3, x4)  =  U3_AGG(x4)
U1_AGA(x1, x2, x3)  =  U1_AGA(x3)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
ACKERMANN_IN_GAG(x1, x2, x3)  =  ACKERMANN_IN_GAG(x1, x3)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)
U1_GAG(x1, x2, x3)  =  U1_GAG(x3)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U1_AGG(x1, x2, x3)  =  U1_AGG(x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x3, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 13 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPOrderProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGA(0) → ACKERMANN_IN_AGA(s)
U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACKERMANN_IN_AGA(0) → ACKERMANN_IN_AGA(s)
The remaining pairs can at least be oriented weakly.

U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACKERMANN_IN_AGA(x1)) = x1   
POL(ACKERMANN_IN_GAA(x1)) = 0   
POL(U1_aga(x1)) = x1   
POL(U1_gaa(x1)) = x1   
POL(U2_AGA(x1)) = x1   
POL(U2_GAA(x1)) = x1   
POL(U2_aga(x1)) = 0   
POL(U2_gaa(x1)) = 0   
POL(U3_aga(x1)) = x1   
POL(U3_gaa(x1)) = x1   
POL(ackermann_in_aga(x1)) = 0   
POL(ackermann_in_gaa(x1)) = 0   
POL(ackermann_out_aga(x1, x2)) = x2   
POL(ackermann_out_gaa(x1)) = x1   
POL(s) = 0   

The following usable rules [17] were oriented:

ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
ackermann_in_aga(N) → ackermann_out_aga(0, s)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ Narrowing
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s)) at position [0] we obtained the following new rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s)) at position [0] we obtained the following new rules:

ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ ForwardInstantiation
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_AGA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1) we obtained the following new rules:

U2_AGA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ ForwardInstantiation
QDP
                                        ↳ ForwardInstantiation
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

U2_AGA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_GAA(ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGA(Val1) we obtained the following new rules:

U2_GAA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
QDP
                                            ↳ NonTerminationProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

U2_AGA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

U2_AGA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(s)) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)


s = ACKERMANN_IN_GAA(s) evaluates to t =ACKERMANN_IN_GAA(s)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ACKERMANN_IN_GAA(s) to ACKERMANN_IN_GAA(s).





↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag
U1_gag(x1, x2, x3)  =  U1_gag(x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1)
U1_agg(x1, x2, x3)  =  U1_agg(x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x3)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPOrderProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(0, Val) → ACKERMANN_IN_AGG(s, Val)
U2_AGG(Val, ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACKERMANN_IN_AGG(0, Val) → ACKERMANN_IN_AGG(s, Val)
The remaining pairs can at least be oriented weakly.

U2_AGG(Val, ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACKERMANN_IN_AGG(x1, x2)) = x1   
POL(U1_aga(x1)) = x1   
POL(U1_gaa(x1)) = x1   
POL(U2_AGG(x1, x2)) = x2   
POL(U2_aga(x1)) = x1   
POL(U2_gaa(x1)) = x1   
POL(U3_aga(x1)) = x1   
POL(U3_gaa(x1)) = x1   
POL(ackermann_in_aga(x1)) = 0   
POL(ackermann_in_gaa(x1)) = 0   
POL(ackermann_out_aga(x1, x2)) = x2   
POL(ackermann_out_gaa(x1)) = x1   
POL(s) = 0   

The following usable rules [17] were oriented:

U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ Narrowing
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

U2_AGG(Val, ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s)) at position [1] we obtained the following new rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ ForwardInstantiation
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
U2_AGG(Val, ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_AGG(Val, ackermann_out_gaa(Val1)) → ACKERMANN_IN_AGG(Val1, Val) we obtained the following new rules:

U2_AGG(x0, ackermann_out_gaa(s)) → ACKERMANN_IN_AGG(s, x0)



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ ForwardInstantiation
QDP
                                    ↳ NonTerminationProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
U2_AGG(x0, ackermann_out_gaa(s)) → ACKERMANN_IN_AGG(s, x0)
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
U2_AGG(x0, ackermann_out_gaa(s)) → ACKERMANN_IN_AGG(s, x0)
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_gaa(ackermann_out_gaa(Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val)
U2_aga(ackermann_out_gaa(Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)
U1_aga(ackermann_out_aga(M, Val)) → ackermann_out_aga(s, Val)


s = U2_AGG(x0, U1_gaa(ackermann_in_aga(N))) evaluates to t =U2_AGG(x0, U1_gaa(ackermann_in_aga(s)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

U2_AGG(x0, U1_gaa(ackermann_in_aga(N)))U2_AGG(x0, U1_gaa(ackermann_out_aga(0, s)))
with rule ackermann_in_aga(N') → ackermann_out_aga(0, s) at position [1,0] and matcher [N' / N]

U2_AGG(x0, U1_gaa(ackermann_out_aga(0, s)))U2_AGG(x0, ackermann_out_gaa(s))
with rule U1_gaa(ackermann_out_aga(M, Val)) → ackermann_out_gaa(Val) at position [1] and matcher [M / 0, Val / s]

U2_AGG(x0, ackermann_out_gaa(s))ACKERMANN_IN_AGG(s, x0)
with rule U2_AGG(x0', ackermann_out_gaa(s)) → ACKERMANN_IN_AGG(s, x0') at position [] and matcher [x0' / x0]

ACKERMANN_IN_AGG(s, x0)U2_AGG(x0, U1_gaa(ackermann_in_aga(s)))
with rule ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.




We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
ackermann_in: (b,f,b) (f,b,b) (b,f,f) (f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → U1_AGG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → U1_AGA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)
U3_AGG(x1, x2, x3, x4)  =  U3_AGG(x3, x4)
U1_AGA(x1, x2, x3)  =  U1_AGA(x3)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x3, x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
ACKERMANN_IN_GAG(x1, x2, x3)  =  ACKERMANN_IN_GAG(x1, x3)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)
U1_GAG(x1, x2, x3)  =  U1_GAG(x2, x3)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U1_AGG(x1, x2, x3)  =  U1_AGG(x2, x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x3, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → U1_AGG(M, Val, ackermann_in_agg(M, s(0), Val))
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)
ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → U1_AGA(M, Val, ackermann_in_aga(M, s(0), Val))
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGA(M, N, Val, ackermann_in_aga(M, Val1, Val))
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_AGG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_agg(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)
U3_AGG(x1, x2, x3, x4)  =  U3_AGG(x3, x4)
U1_AGA(x1, x2, x3)  =  U1_AGA(x3)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x3, x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
ACKERMANN_IN_GAG(x1, x2, x3)  =  ACKERMANN_IN_GAG(x1, x3)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)
U1_GAG(x1, x2, x3)  =  U1_GAG(x2, x3)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U1_AGG(x1, x2, x3)  =  U1_AGG(x2, x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x3, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 13 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_AGA(s(M), s(N), Val) → U2_AGA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_AGA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_AGA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGA(M, Val1, Val)
ACKERMANN_IN_AGA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_AGA(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ACKERMANN_IN_GAA(x1, x2, x3)  =  ACKERMANN_IN_GAA(x1)
U2_AGA(x1, x2, x3, x4)  =  U2_AGA(x4)
ACKERMANN_IN_AGA(x1, x2, x3)  =  ACKERMANN_IN_AGA(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPOrderProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGA(0) → ACKERMANN_IN_AGA(s)
U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACKERMANN_IN_AGA(0) → ACKERMANN_IN_AGA(s)
The remaining pairs can at least be oriented weakly.

U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACKERMANN_IN_AGA(x1)) = x1   
POL(ACKERMANN_IN_GAA(x1)) = 0   
POL(U1_aga(x1)) = x1   
POL(U1_gaa(x1)) = x1   
POL(U2_AGA(x1)) = x1   
POL(U2_GAA(x1)) = x1   
POL(U2_aga(x1)) = x1   
POL(U2_gaa(x1)) = x1   
POL(U3_aga(x1)) = x1   
POL(U3_gaa(x1)) = x1   
POL(ackermann_in_aga(x1)) = 0   
POL(ackermann_in_gaa(x1)) = 0   
POL(ackermann_out_aga(x1, x2, x3)) = x3   
POL(ackermann_out_gaa(x1, x2)) = x2   
POL(s) = 0   

The following usable rules [17] were oriented:

U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ Narrowing
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_GAA(s) → U2_GAA(ackermann_in_gaa(s)) at position [0] we obtained the following new rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_AGA(s) → U2_AGA(ackermann_in_gaa(s)) at position [0] we obtained the following new rules:

ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ ForwardInstantiation
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_GAA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1) we obtained the following new rules:

U2_GAA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ ForwardInstantiation
QDP
                                        ↳ ForwardInstantiation
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
U2_GAA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_AGA(ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGA(Val1) we obtained the following new rules:

U2_AGA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
QDP
                                            ↳ NonTerminationProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
U2_GAA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
U2_AGA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

ACKERMANN_IN_GAA(s) → U2_GAA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_AGA(s) → U2_AGA(U2_gaa(ackermann_in_gaa(s)))
ACKERMANN_IN_GAA(s) → U2_GAA(U1_gaa(ackermann_in_aga(s)))
U2_GAA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_AGA(s) → ACKERMANN_IN_GAA(s)
U2_AGA(ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGA(s)
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_GAA(s)
ACKERMANN_IN_AGA(s) → U2_AGA(U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_GAA(s) → ACKERMANN_IN_AGA(s)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)


s = ACKERMANN_IN_GAA(s) evaluates to t =ACKERMANN_IN_GAA(s)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ACKERMANN_IN_GAA(s) to ACKERMANN_IN_GAA(s).





↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(0, N, s(N)) → ackermann_out_agg(0, N, s(N))
ackermann_in_agg(s(M), 0, Val) → U1_agg(M, Val, ackermann_in_agg(M, s(0), Val))
ackermann_in_agg(s(M), s(N), Val) → U2_agg(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_agg(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_agg(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_agg(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_agg(s(M), s(N), Val)
U1_agg(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_agg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_agg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_agg(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_agg(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)

The argument filtering Pi contains the following mapping:
ackermann_in_gag(x1, x2, x3)  =  ackermann_in_gag(x1, x3)
0  =  0
s(x1)  =  s
ackermann_out_gag(x1, x2, x3)  =  ackermann_out_gag(x1, x3)
U1_gag(x1, x2, x3)  =  U1_gag(x2, x3)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x3, x4)
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
ackermann_in_agg(x1, x2, x3)  =  ackermann_in_agg(x2, x3)
ackermann_out_agg(x1, x2, x3)  =  ackermann_out_agg(x1, x2, x3)
U1_agg(x1, x2, x3)  =  U1_agg(x2, x3)
U2_agg(x1, x2, x3, x4)  =  U2_agg(x3, x4)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U3_agg(x1, x2, x3, x4)  =  U3_agg(x3, x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x3, x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s(M), s(N), Val) → U2_AGG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_AGG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_AGG(M, Val1, Val)
ACKERMANN_IN_AGG(s(M), 0, Val) → ACKERMANN_IN_AGG(M, s(0), Val)

The TRS R consists of the following rules:

ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_aga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(0, N, s(N)) → ackermann_out_aga(0, N, s(N))
ackermann_in_aga(s(M), s(N), Val) → U2_aga(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_aga(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_aga(M, N, Val, ackermann_in_aga(M, Val1, Val))
ackermann_in_aga(s(M), 0, Val) → U1_aga(M, Val, ackermann_in_aga(M, s(0), Val))
U3_aga(M, N, Val, ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s(M), s(N), Val)
U1_aga(M, Val, ackermann_out_aga(M, s(0), Val)) → ackermann_out_aga(s(M), 0, Val)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s
ackermann_in_gaa(x1, x2, x3)  =  ackermann_in_gaa(x1)
ackermann_out_gaa(x1, x2, x3)  =  ackermann_out_gaa(x1, x3)
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
ackermann_in_aga(x1, x2, x3)  =  ackermann_in_aga(x2)
ackermann_out_aga(x1, x2, x3)  =  ackermann_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3)  =  U1_aga(x3)
U2_aga(x1, x2, x3, x4)  =  U2_aga(x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
U2_AGG(x1, x2, x3, x4)  =  U2_AGG(x3, x4)
ACKERMANN_IN_AGG(x1, x2, x3)  =  ACKERMANN_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(0, Val) → ACKERMANN_IN_AGG(s, Val)
U2_AGG(Val, ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACKERMANN_IN_AGG(0, Val) → ACKERMANN_IN_AGG(s, Val)
The remaining pairs can at least be oriented weakly.

U2_AGG(Val, ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))
Used ordering: Polynomial interpretation [25]:

POL(0) = 1   
POL(ACKERMANN_IN_AGG(x1, x2)) = x1   
POL(U1_aga(x1)) = x1   
POL(U1_gaa(x1)) = x1   
POL(U2_AGG(x1, x2)) = x2   
POL(U2_aga(x1)) = x1   
POL(U2_gaa(x1)) = 0   
POL(U3_aga(x1)) = x1   
POL(U3_gaa(x1)) = x1   
POL(ackermann_in_aga(x1)) = 0   
POL(ackermann_in_gaa(x1)) = 0   
POL(ackermann_out_aga(x1, x2, x3)) = x3   
POL(ackermann_out_gaa(x1, x2)) = x2   
POL(s) = 0   

The following usable rules [17] were oriented:

ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

U2_AGG(Val, ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGG(Val1, Val)
ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s))

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By narrowing [15] the rule ACKERMANN_IN_AGG(s, Val) → U2_AGG(Val, ackermann_in_gaa(s)) at position [1] we obtained the following new rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))
U2_AGG(Val, ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGG(Val1, Val)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
By forward instantiating [14] the rule U2_AGG(Val, ackermann_out_gaa(s, Val1)) → ACKERMANN_IN_AGG(Val1, Val) we obtained the following new rules:

U2_AGG(x0, ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGG(s, x0)



↳ Prolog
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ ForwardInstantiation
QDP
                                    ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))
U2_AGG(x0, ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGG(s, x0)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)

The set Q consists of the following terms:

ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0)
ackermann_in_aga(x0)
U3_gaa(x0)
U2_aga(x0)
U3_aga(x0)
U1_aga(x0)

We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))
ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U2_gaa(ackermann_in_gaa(s)))
U2_AGG(x0, ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGG(s, x0)

The TRS R consists of the following rules:

ackermann_in_gaa(s) → U1_gaa(ackermann_in_aga(s))
ackermann_in_gaa(s) → U2_gaa(ackermann_in_gaa(s))
U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val)
U2_gaa(ackermann_out_gaa(s, Val1)) → U3_gaa(ackermann_in_aga(Val1))
ackermann_in_aga(N) → ackermann_out_aga(0, N, s)
ackermann_in_aga(s) → U2_aga(ackermann_in_gaa(s))
U3_gaa(ackermann_out_aga(M, Val1, Val)) → ackermann_out_gaa(s, Val)
U2_aga(ackermann_out_gaa(s, Val1)) → U3_aga(ackermann_in_aga(Val1))
ackermann_in_aga(0) → U1_aga(ackermann_in_aga(s))
U3_aga(ackermann_out_aga(M, Val1, Val)) → ackermann_out_aga(s, s, Val)
U1_aga(ackermann_out_aga(M, s, Val)) → ackermann_out_aga(s, 0, Val)


s = U2_AGG(x0, U1_gaa(ackermann_in_aga(s))) evaluates to t =U2_AGG(x0, U1_gaa(ackermann_in_aga(s)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

U2_AGG(x0, U1_gaa(ackermann_in_aga(s)))U2_AGG(x0, U1_gaa(ackermann_out_aga(0, s, s)))
with rule ackermann_in_aga(N) → ackermann_out_aga(0, N, s) at position [1,0] and matcher [N / s]

U2_AGG(x0, U1_gaa(ackermann_out_aga(0, s, s)))U2_AGG(x0, ackermann_out_gaa(s, s))
with rule U1_gaa(ackermann_out_aga(M, s, Val)) → ackermann_out_gaa(s, Val) at position [1] and matcher [M / 0, Val / s]

U2_AGG(x0, ackermann_out_gaa(s, s))ACKERMANN_IN_AGG(s, x0)
with rule U2_AGG(x0', ackermann_out_gaa(s, s)) → ACKERMANN_IN_AGG(s, x0') at position [] and matcher [x0' / x0]

ACKERMANN_IN_AGG(s, x0)U2_AGG(x0, U1_gaa(ackermann_in_aga(s)))
with rule ACKERMANN_IN_AGG(s, y0) → U2_AGG(y0, U1_gaa(ackermann_in_aga(s)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.